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Abstract

Graph kernels have emerged as a powerful tool for graph
comparison. Most existing graph kernels focus on local prop-
erties of graphs and ignore global structure. In this paper, we
compare graphs based on their global properties as these are
captured by the eigenvectors of their adjacency matrices. We
present two algorithms for both labeled and unlabeled graph
comparison. These algorithms represent each graph as a set
of vectors corresponding to the embeddings of its vertices.
The similarity between two graphs is then determined using
the Earth Mover’s Distance metric. These similarities do not
yield a positive semidefinite matrix. To address for this, we
employ an algorithm for SVM classification using indefinite
kernels. We also present a graph kernel based on the Pyra-
mid Match kernel that finds an approximate correspondence
between the sets of vectors of the two graphs. We further
improve the proposed kernel using the Weisfeiler-Lehman
framework. We evaluate the proposed methods on several
benchmark datasets for graph classification and compare their
performance to state-of-the-art graph kernels. In most cases,
the proposed algorithms outperform the competing methods,
while their time complexity remains very attractive.

1 Introduction
In recent years, graph-based representations have become
extremely popular for modelling real-world data. Some ex-
amples of data represented as graphs include social net-
works, protein or gene regulation networks and textual doc-
uments. Graph kernels have been successfully used for
comparing graphs in a variety of fields such as Computa-
tional Biology (Schölkopf, Tsuda, and Vert 2004), Chem-
istry (Mahé and Vert 2009), Information Retrieval (Her-
mansson et al. 2013) and Medicine (Feragen et al. 2013).

In the heart of graph kernels lies a positive semidef-
inite kernel function k. Once we define such a function
k : X × X → R on a set X , it is known that there ex-
ists a map φ : X → H into a Hilbert space H, such that
k(x, x′) = 〈φ(x), φ(x′)〉 for all x, x′ ∈ X where 〈·, ·〉 is
the inner product in H. Graph kernels have traditionally em-
ployed functions that compare substructures of graphs that
are computable in polynomial time. More specifically, there
is a plethora of graph kernels, each focusing on a different
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structural aspect of graphs. There are kernels based on ran-
dom walks (Kashima, Tsuda, and Inokuchi 2003; Gärtner,
Flach, and Wrobel 2003), shortest paths (Borgwardt and
Kriegel 2005), subtrees (Gärtner, Flach, and Wrobel 2003;
Mahé and Vert 2009), cycles (Horváth, Gärtner, and Wro-
bel 2004) and graphlets (Shervashidze et al. 2009). The per-
formance of these kernels can be considerably improved
by using the Weisfeiler-Lehman test of isomorphism (Sher-
vashidze et al. 2011) or by taking into account similarities
between the extracted instances of the considered substruc-
tures (Yanardag and Vishwanathan 2015b; 2015a).

Most existing graph kernels hence compare specific sub-
structures of graphs (trees, cycles, paths, etc.). These sub-
structures correspond either to small subgraphs present in
the graphs or to relationships between very small subsets
of vertices. Hence, these algorithms focus on local prop-
erties of graphs and ignore global structure. For graphs of
small size, such local approaches may be appropriate. How-
ever, for larger graphs, they may suffer from their local na-
ture and fail to perform equivalently, as several interesting
properties of these graphs may not be captured in local sub-
structures. Hence, the need for graph kernels that are built
upon global properties of graphs is clear. Some very recent
work in this direction has resulted in the development of two
graph kernels that are based on the Lovász number and the
corresponding orthonormal representation (Johansson et al.
2014). However, these kernels are defined only on unlabeled
graphs. A second approach compares pairs of graphs by
computing the optimal matching between the embeddings
of their vertices generated from various graph-related ma-
trices (adjacency matrix, Laplacian matrix, etc.) (Johansson
and Dubhashi 2015). However, the emerging kernel matrix
is not always positive semidefinite (Vert 2008) and the au-
thors resort to the Balcan-Blum-Srebro theory of classifica-
tion with similarity functions.

The goal of this paper is to address the aforementioned
problems of graph kernels that focus on local substructures
of graphs. By employing algorithms that utilize features de-
scribing global properties of graphs, we can overcome these
inherent limitations of “local” kernels. It is also desirable
that these algorithms produce valid kernel matrices so that
they enjoy the attractive properties of kernel methods.

Main Contributions We present two novel algorithms
designed to compare pairs of graphs based on their global
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properties. The algorithms are applicable to both labeled and
unlabeled graphs. Each graph is first represented as a col-
lection of the embeddings of its vertices. The vertices of
the graphs are embedded in the Euclidean space using the
eigenvectors of the corresponding adjacency matrices. The
similarity between pairs of graphs is measured by comput-
ing a matching between their sets of embeddings. Two al-
gorithms are employed. The first algorithm casts the prob-
lem as an instance of the Earth Mover’s Distance (Rub-
ner, Tomasi, and Guibas 2000), a well-known transportation
problem and for a set of graphs builds a similarity matrix.
However, the similarity matrix that emerges is not always
positive semidefinite. To account for this problem, we cap-
italize on a well-established algorithm for Support Vector
Machine (SVM) classification using indefinite kernels (Luss
and d’Aspremont 2008) which treats the indefinite similarity
matrix as a noisy observation of the true positive semidefi-
nite kernel. The second algorithm corresponds to a technique
adapted from the Pyramid Match kernel (Grauman and Dar-
rell 2007) and yields a positive semidefinite matrix. We call
this method the Pyramid Match graph kernel. In the case of
labeled graphs, to further improve the proposed kernel, we
employ the Weisfeiler-Lehman framework (Shervashidze et
al. 2011). We show via experimental evaluation on several
graph classification datasets that the proposed algorithms
produce better or competitive results with state-of-the-art
graph kernels and that are also efficient in terms of running
time.

The rest of this paper is organized as follows. Section 2 in-
troduces some preliminary concepts and gives details about
how the embeddings of vertices are generated. Section 3
presents the formulation of the problem as an instance of the
Earth Mover’s Distance and how we train an SVM using the
emerging indefinite similarity matrix. Section 4 presents the
Pyramid Match graph kernel. Section 5 evaluates the pro-
posed algorithms and compares them with existing methods.
Finally, Section 6 concludes.

2 Preliminaries
In this section, we first introduce basic concepts from graph
theory, and define our notation. We then present how the
nodes of the graphs are embedded in the vector space. We
finally give details regarding the representation of graphs as
bag-of-vectors.

Graph Concepts
Let G = (V,E) be an undirected and unweighted graph
consisting of a set V of vertices and a set E of edges be-
tween them. In this paper, we will denote by n the number
of vertices and by m the number of edges. A graph G can be
represented by its adjacency matrix A. If Aij is the element
in the ith row and jth column of matrix A, the adjacency
matrix A can be defined as follows:

Aij =

{
1 if (vi, vj) ∈ E,
0 otherwise

where (vi, vj) is an edge between vertices vi and vj of V .
A labeled graph is a graph with labels on vertices and/or

edges. In this paper, we will consider unlabeled graphs and

graphs with labeled vertices. Given a set of labels L, � :
V → L is a function that assigns labels to the vertices of the
graph.

Embeddings of nodes
Given a graph G = (V,E), we can represent its vertices as
points in a vector space using a node embedding algorithm.
In this paper, we generate embeddings for the vertices of
a graph using the eigenvectors of its adjacency matrix A.
Given the eigenvalue decomposition of A, A = UΛUT ,
the ith row ui of U corresponds to the embedding of ver-
tex vi ∈ V . Such embeddings capture global properties of
graphs and offer a powerful and flexible mechanism for per-
forming machine learning tasks on them. Since A is real and
symmetric, its eigenvalues λ1, . . . , λn are real. The consid-
ered graphs contain no self-loops, hence, Tr(A) = 0, and
since Tr(A) = λ1 + . . .+ λn, the eigenvalues sum to zero.
Therefore, some eigenvalues will be positive, while oth-
ers will be negative. The eigenvectors corresponding to the
largest (in magnitude) eigenvalues share some interesting
properties. For example, according to the Perron-Frobenius
theorem, since A has only nonnegative entries, it has a non-
negative real eigenvalue λmax which has maximum abso-
lute value among all eigenvalues. This eigenvalue λmax has
a nonnegative real eigenvector. The ith component of the
related eigenvector gives the eigenvector centrality score of
vertex vi in the graph (Jackson 2010). Eigenvector centrality
is a measure of global connectivity of a graph which is cap-
tured by the spectrum of the adjacency matrix. Other global
properties of the vertices of a graph are captured by the
eigenvectors corresponding to the next largest eigenvalues
of A. Note that the signs of these eigenvectors are arbitrary,
hence, we replace all their components by their absolute val-
ues. In this paper, we generate low-dimensional representa-
tions for the vertices of each graph vi ∈ V . Specifically,
we embed all vertices in the d-dimensional vector space R

d

using the eigenvectors of the d largest in magnitude eigen-
values. We can thus think of each vertex as a point in the
d-dimensional unit hypercube.

Bag-of-vectors
Let G = {G1, G2, . . . , GN} be a population of N graphs.
Assume we have embedded the nodes of each graph Gi ∈ G
in the d-dimensional space and UGi

∈ R
ni×d is the embed-

ding matrix for the vertices of Gi. The ith row, ui ∈ R
d rep-

resents the embedding of the ith node in the d-dimensional
space.

In several domains, it is useful to represent a data ob-
ject with a collection of its parts. For instance, in Natu-
ral Language Processing, documents are usually represented
as bags-of-words. Likewise, in Image Recognition, images
may be described by sets of features, where each feature is
extracted from a single pixel. In this paper, we focus on rep-
resenting graphs as bags-of-vectors. For example, a graph G
can be represented as the following set: {u1,u2, . . . ,un},
where each vector of the set corresponds to the representa-
tion of each vertex ui ∈ V in R

d. Since there is no canonical
ordering for the nodes of a graph, this is a natural represen-
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tation and is also meaningful as each graph can be seen as
“a sum of its parts”.

3 Earth Mover’s Distance
A natural way to measure the similarity between pairs of
graphs is by comparing their building blocks, i. e. their ver-
tices. As mentioned above, we represent each graph as a
bag-of-vectors, where the vectors correspond to the em-
beddings of its vertices. This enables us to formalize the
comparison of two graphs as a transportation problem and
solve it using the Earth Mover’s Distance (EMD) (Rub-
ner, Tomasi, and Guibas 2000). More specifically, given two
graphs G1 = (V1, E1) and G2 = (V2, E2), the minimum
“travel cost” between the two graphs is provided by the so-
lution of the following linear program:

min

n1∑
i=1

n2∑
j=1

Tijd(vi, uj)

subject to
n1∑
i=1

Tij =
1

n2
∀j ∈ {1, . . . , n2}

n2∑
j=1

Tij =
1

n1
∀i ∈ {1, . . . , n1}

Tij ≥ 0 ∀i ∈ {1, . . . , n1}, ∀j ∈ {1, . . . , n2}

(1)

where d(vi, uj) is a measure of vertex dissimilarity between
nodes vi ∈ V1 and uj ∈ V2, and T ∈ R

n1×n2 is a flow ma-
trix. In our case, the vertex dissimilarity d(vi, uj) between
nodes vi and uj is provided by their Euclidean distance in
the embedding space. Hence, d(vi, uj) = ||ui−uj ||2. As re-
gards to the flow matrix T, its elements Tij ≥ 0 denote how
much of vertex vi ∈ V1 travels to vertex uj ∈ V2. The above
formulation allows each vertex vi ∈ V1 to be transformed
into any vertex uj ∈ V2 in total or in parts. The outgoing
flow from each graph is equal to 1 and is equally divided
among all vertices. Therefore, to transform G1 entirely into
G2, we ensure that the entire outgoing flow from vertex vi
equals 1

n1
, i. e.

∑
j Tij = 1

n1
. Further, the amount of in-

coming flow to vertex uj must match 1
n2

, i. e.
∑

i Tij =
1
n2

.
Hence, the distance between the two graphs is defined as the
minimum cumulative cost required to move all vertices from
G1 to G2.

EMD is a well-studied transportation problem which
has been successfully used in Computer Vision (Rubner,
Tomasi, and Guibas 2000) and in Text Categorization (Kus-
ner et al. 2015). There exist several fast specialized algo-
rithms in the literature for solving EMD instances (Pele and
Werman 2009). Specifically, solving the above optimization
problem requires O(n3logn) time where n is the number of
vertices of the two graphs.

The above methodology applies in the case of simple,
undirected, unlabeled graphs. However, our method is eval-
uated on datasets consisting of graphs with labeled vertices.
Hence, neglecting these labels is not the best practice. To
account for these labels, we can simply set the distances be-
tween pairs of vertices with different labels to the largest

possible value. The nodes of each graph lie in the interior
of the unit hypercube [0, 1]d in R

d, since the norm of each
eigenvector is equal to 1 and we have set all the components
of the eigenvectors to their absolute values. The length of the
longest diagonal of the d-dimensional unit hypercube is

√
d,

hence, the maximum possible Euclidean distance between
two points in that space is also

√
d. Hence, we set the dis-

tance between nodes of different labels equal to that value:

d′(vi, uj) =

{
d(vi, uj) if �(vi) = �(uj),√
d otherwise

(2)

where d(vi, uj) is the Euclidean distance between the em-
beddings of the two vertices.

Let D ∈ R
N×N be the distance matrix that is built from

all the pairwise distances between graphs Gi, Gj ∈ G. It
would be very convenient if D was a Euclidean Distance
Matrix (EDM) (Gower 1982; Gower and Legendre 1986). In
such a case, we could use D to define a positive semidefinite
kernel matrix K ∈ R

N×N ,K 	 0 as follows:

K = −1

2
JDJ (3)

where J is the centering matrix J = I − 1
N 11T ∈ R

N×N

and I is the identity matrix. A matrix D ∈ R
N×N is called

a Euclidean Distance Matrix (EDM), when its entries, d2ij
are the Euclidean distance-squares between pairs of xi and
xj , i. e. Dij = d2ij = ||xi − xj ||2. An alternative defini-
tion by Schoenberg (1935) states that a matrix D is an EDM
if and only if it belongs to the symmetric hollow subspace
D ∈ S

N
h , i. e. the subspace of symmetric matrices S

N of
size N with a zero diagonal and is negative semidefinite
D 
 0. However, the distance matrices generated by EMD
are not necessarily negative semidefinite (Naor and Schecht-
man 2007), and cannot thus be used directly to define posi-
tive semidefinite kernels. In our setting, although matrix K
is not positive semidefinite (since D is not Euclidean), it cor-
responds to a similarity matrix and we can consider it as a
noisy observation of an unknown positive semidefinite ker-
nel in order to derive a valid kernel. Let K0 be the indefinite
similarity matrix and y ∈ R

N be the vector of class labels,
with Y = diag(y) the matrix with diagonal y. We can for-
mulate the following extension of the SVM for indefinite
kernels (Luss and d’Aspremont 2008):

max
aTy=0,0≤a≤C1

min
K�0

αT1− 1

2
Tr(K(Yα)(Yα)T )

+ ρ||K−K0||2F
(4)

where we solve in the variables K ∈ S
N and α ∈ R

N ,
and where parameter ρ > 0 controls the magnitude of the
penalty on the distance between K and K0. While the orig-
inal SVM classification problem with indefinite kernel is
nonconvex, the above formulation corresponds to a convex
problem, and hence, can be solved efficiently with guaran-
teed complexity bounds. What the above convex problem
essentially does is to simultaneously learn the support vec-
tor weights and a proxy positive semidefinite kernel matrix,
while trying to minimize the distance between this proxy
kernel and the indefinite similarity matrix.
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4 Pyramid Match Graph Kernel
Although we can use the above scheme to perform SVM
classification using the similarity matrix generated by EMD,
the existence of negative eigenvalues with large magnitude
may lead to proxy kernel matrices that are not in accordance
with the data. It would be desirable to employ an algorithm
that produces positive semidefinite kernel matrices so that
we can capitalize on the theoretical properties associated
with kernel methods.

We present below an algorithm that is based on the Pyra-
mid Match kernel (PM), a very popular algorithm in Com-
puter Vision (Grauman and Darrell 2007; Lazebnik, Schmid,
and Ponce 2006). The algorithm generates positive semidef-
inite kernel matrices (hence, it is a graph kernel). Very re-
cently, a graph kernel that employs the Vocabulary-Guided
Pyramid Match kernel for matching the vector representa-
tions of the vertices of two graphs was proposed (Su et al.
2016). However, these representations are generated based
on the labels and the neighbors of the vertices and are thus
in contrast to the proposed approaches local in nature. As
mentioned above, each graph is represented as a bag-of-
vectors. The basic idea of the algorithm is to map these vec-
tors to multi-resolution histograms, and then compare the
histograms with a weighted histogram intersection measure
in order to find an approximate correspondence between the
two sets of vectors.

PM works by partitioning the feature space into regions
of increasingly larger size and taking a weighted sum of
the matches that occur at each level. Two points are said
to match if they fall into the same region. Matches made
within larger regions are weighted less than those found in
smaller regions. Recall that in our setting, each vertex cor-
responds to a point lying in the d-dimensional unit hyper-
cube. We repeatedly fit a grid with cells of increasing size to
the d-dimensional unit hypercube. Each cell is related only
to a specific dimension and its size along that dimension is
doubled at each iteration, while its size along the other di-
mensions stays constant and equal to 1. Given a sequence
of levels from 0 to L, then at level l, the d-dimensional unit
hypercube has 2l cells along each dimension and D = 2ld
cells in total. Given a pair of graphs G1, G2 ∈ G, let H l

G1

and H l
G2

denote the histograms of G1 and G2 at level l, and
H l

G1
(i), H l

G2
(i), the number of vertices of G1, G2 that lie in

the ith cell. The number of points in two sets which match
at level l is then computed using the histogram intersection
function:

I(H l
G1

, H l
G2

) =

D∑
i=1

min
(
H l

G1
(i), H l

G2
(i)

)
(5)

The matches that occur at level l also occur at levels
0, . . . , l−1. We are interested in the number of new matches
found at each level which is given by I(H l

G1
, H l

G2
) −

I(H l+1
G1

, H l+1
G2

) for l = 0, . . . , L − 1. The number of new
matches found at each level in the pyramid is weighted ac-
cording to the size of that level’s cells. Matches found within
smaller cells are weighted more than those made in larger
cells. Specifically, the weight for level l is set equal to 1

2L−l .

Hence, the weights are inversely proportional to the length
of the side of the cells that varies in size as the levels in-
crease. The pyramid match kernel is then defined as follows:

kΔ(G1, G2) = I(HL
G1

, HL
G2

) +

L−1∑
l=0

1

2L−l

(
I(H l

G1
, H l

G2
)

− I(H l+1
G1

, H l+1
G2

)
)

(6)

The pyramid match kernel is a Mercer kernel (Grauman
and Darrell 2007), hence, by computing it for all pairs of
graphs, we can build a positive semidefinite kernel matrix.
This matrix guarantees an optimal solution to kernel-based
algorithms such as SVMs. The complexity of the pyramid
match kernel is O(dnL) where n is the number of nodes of
the graphs under comparison.

The above graph kernel is defined for unlabeled graphs.
All vertices of the first graph can match to any vertex of the
second. However, in the case of labeled graphs, we would
like to restrict matchings to occur only between vertices that
share same labels. Instead of representing each graph as a
set of vectors, we can represent it as a set of sets of vec-
tors, where each internal set corresponds to a specific label
and contains the embeddings of the vertices with that label.
We can then match sets of the two graphs corresponding to
the same label using the pyramid match kernel. The emerg-
ing kernel for labeled graphs corresponds to the sum of the
separate kernels:

klabΔ =
c∑

i=1

kiΔ(G1, G2) (7)

where c is the number of distinct labels and kiΔ(G1, G2) is
the pyramid match kernel between the sets of vertices of the
two graphs for which �(v) = i. We can further enhance the
PM kernel by employing the Weisfeiler-Lehman framework
(Shervashidze et al. 2011).

5 Experiments
In this section, we first describe the datasets that we used for
our experiments. We next present the graph kernels against
which we compared our algorithms, and give details about
the experimental settings. We last report on the performance
of our methods and the baselines.

Datasets
We evaluated the performance of our methods on the follow-
ing 6 bioinformatics datasets: MUTAG, ENZYMES, NCI1,
NCI109, PTC-MR and D&D. The MUTAG dataset (Deb-
nath et al. 1991) consists of 188 mutagenic aromatic and
heteroaromatic nitro compounds. Each chemical compound
is labeled according to whether or not it has mutagenic effect
on the Gram-negative bacterium Salmonella typhimurium.
The ENZYMES dataset (Borgwardt et al. 2005) contains
600 graphs representing enzymes from the BRENDA en-
zyme database. Each enzyme is a member of one of the 6
Enzyme Commission top level enzyme classes (EC classes)
and the task is to correctly assign the enzymes to their
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Dataset MUTAG ENZYMES NCI1 NCI109 PTC-MR D&D
Max # vertices 28 126 111 111 109 5748
Min # vertices 10 2 3 4 2 30
Average # vertices 17.93 32.63 29.87 29.68 25.56 284.32
Max # edges 33 149 119 119 108 14267
Min # edges 10 1 2 3 1 63
Average # edges 19.79 62.14 32.30 32.13 25.96 715.66
# labels 7 3 37 38 19 82
# graphs 188 600 4110 4127 344 1178
# classes 2 6 2 2 2 2

Table 1: Summary of the 6 datasets that were used in our
experiments.

classes. The NCI1 and NCI109 datasets (Wale, Watson,
and Karypis 2008) are two balanced subsets of chemical
compounds which are classified based on whether they are
active or inactive against non-small cell lung cancer and
ovarian cancer cell lines respectively. The PTC-MR dataset
(Toivonen et al. 2003) consists of 344 organic molecules
marked according to their carcinogenicity on male rats. The
D&D dataset (Dobson and Doig 2003) contains 1178 protein
structures. Each protein is a graph whose nodes correspond
to amino acids and a pair of amino acids are linked by an
edge if they are less than 6 Ångstroms apart. The task is to
predict if a protein is an enzyme or not. Table 5 shows statis-
tics of the five datasets that were used for the evaluation.

Baselines
We compare our methods against several state-of-the-art
graph kernels. The first three are applicable both to la-
beled and unlabeled graphs, the next two only to labeled
graphs, while the last one can be computed only for unla-
beled graphs. More specifically, our baseline comparators
are (1) the random walk kernel (RW) that counts common
walks in two graphs (Vishwanathan et al. 2010), (2) the
graphlet kernel (GR) that counts common connected sub-
graphs of size 3 (Shervashidze et al. 2009), (3) the shortest
path kernel (SP) that counts shortest paths of equal length
between pairs of nodes (Borgwardt and Kriegel 2005), (4)
the Weisfeiler-Lehman subtree kernel (WL ST) that for a
number of iterations counts pairs of matching subtree pat-
terns in two graphs, while at each iteration updates the labels
of the nodes of the graph (Shervashidze et al. 2011), (5) the
Weisfeiler-Lehman shortest path kernel (WL SP) that does
the same for shortest paths (Shervashidze et al. 2011) and
(6) the Lovász ϑ kernel (Lo-ϑ) that captures global graph
properties using the Lovász orthonormal representation (Jo-
hansson et al. 2014). We also compare our methods against
(7) an approach that computes the optimal assignment be-
tween the embeddings of the vertices of two graphs (OA)
(Johansson and Dubhashi 2015). For a fair comparison, we
used embeddings generated from the adjacency matrix. Like
EMD, this method does not always yield positive semidefi-
nite matrices.

We set the parameter λ of the random walk kernel equal to
the largest power of 10 smaller than the inverse of the square
maximum degree (Shervashidze et al. 2011). As regards the
parameter h of the Weisfeiler-Lehman kernels, it was chosen
by cross-validation on the training set for h ∈ {0, 1, . . . , 10}
in the case of the subtree kernel, for h ∈ {0, 1, 2} in the case

of the shortest path kernel, and for h ∈ {0, 1, . . . , 5} in the
case of the proposed pyramid match kernel and the optimal
assignment method. The proposed methods are written in
Matlab1. As regards the baselines, we used their publicly
available implementations.

Experimental Setup
To perform graph classification, we employed a C-Support
Vector Machine (SVM) classifier and in particular, the LIB-
SVM (Chang and Lin 2011) implementation and performed
10-fold cross-validation. The whole process was repeated 10
times for each dataset and each method. The parameter C of
the SVM was optimized on the training set only. We report
in Table 2 average prediction accuracies, standard deviations
and CPU runtimes for computing each kernel/similarity ma-
trix as measured in Matlab R2013a on a 3.4GHz Intel Core
i7 with 16Gb of RAM.

Results
Our experiments show that embedding-based graph compar-
ison algorithms have the potential to contribute to advances
in real-world graph classification problems. The EMD-based
approach and the PM and WL PM kernels achieved better
classification accuracies on all datasets for unlabeled graphs
and on four out of six datasets for labeled graphs. Specifi-
cally, in the case of unlabeled graphs, EMD outperformed all
methods on all datasets except from the PTC-MR and D&D
datasets on which the PM kernel led to better performance.
As regards the kernel methods, the PM kernel led to best re-
sults on all datasets. It is worth noting that on all datasets
except ENZYMES, it significantly improved the best accu-
racy attained by the other kernels. In the case of labeled
graphs, EMD reached again the highest accuracy on MU-
TAG, while WL PM was the best performing method on the
NCI1, NCI109 and PTC-MR datasets. EMD, PM and WL
PM were all outperformed by the WL SP and GR kernels
on the ENZYMES and D&D datasets respectively. Over-
all, the proposed methods performed better or comparable
to state-of-the-art graph kernels. The OA method which is
closly related to the proposed approaches was outperformed
by at least one of EMD, PM and WL PM on all datasets.
However, its performance was close to that of the proposed
approaches. As regards the good classification performance
demonstrated by EMD, this may be due to the fact that the
generated similarity matrices were either positive semidefi-
nite or close to being positive semidefinite.

In terms of runtime, we observe that on all datasets ex-
cept D&D, the EMD and PM approaches are slower than
the SP, GR, WL ST and WL SP kernels, however, they
are faster than the RW, Lo-ϑ kernels and the OA approach.
It is worth mentioning that even if PM is slower than the
above-mentioned four kernels, its computing times are by
no means prohibitive. Between the three methods that uti-
lize embeddings of the adjacency matrix, PM is the fastest
followed by EMD and OA. More specifically, there is a sig-
nificant difference in runtime between PM and the other

1Our code is available at http://www.db-net.aueb.gr/
nikolentzos/code/matchingnodes.zip
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Method
Datasets MUTAG ENZYMES NCI1 NCI109 PTC-MR D&D

Without node labels

SP 82.22 (± 1.14) 28.17 (± 0.64) 62.02 (± 0.17) 61.41 (± 0.32) 56.18 (± 0.56)
> 1 day

0.16” 1.26” 7.55” 7.32” 0.47”

RW 77.78 (± 0.98) 20.17 (± 0.83) 56.89 (± 0.24) 56.13 (± 0.31) 56.18 (± 1.12) 58.71 (± 0.43)
17.01” 4’ 46” 2h 40’ 15” 2h 44’ 29” 1’ 23” 6h 45’ 1”

GR 66.11 (± 1.31) 18.16 (± 0.47) 47.37 (± 0.15) 48.39 (± 0.18) 57.05 (± 0.83) 63.67 (± 0.57)
0.07” 2.01” 4.42” 4.37” 0.14” 1’ 04”

Lo-ϑ 82.78 (± 0.89) 26.33 (± 0.44) 62.68 (± 0.24) 62.42 (± 0.27) 55.00 (± 0.62)
> 1 day

15’ 26” 2h 11’ 31” 17h 41’ 57” 17h 45’ 27” 1h 9’ 58”

OA 79.44 (± 1.08) 36.33 (± 0.71) 67.81 (± 0.18) 66.94 (± 0.21) 56.17 (± 0.95)
> 1 day

6.56” 3’ 19” 2h 21’ 57” 2h 20’ 13” 42.94”

EMD 86.11 (± 0.84) 36.83 (± 0.78) 72.65 (± 0.24) 71.70 (± 0.16) 57.65 (± 0.59)
> 1 day

4.5” 1’ 57” 1h 11’ 31” 1h 10’ 37” 24.28”

PM 85.55 (± 0.63) 28.17 (± 0.37) 69.73 (± 0.11) 68.37 (± 0.14) 59.41 (± 0.68) 75.55 (± 0.62)
1.26” 8.07” 3’ 19” 3’ 17” 3.51” 41.23”

With node labels

SP 87.78 (± 0.44) 41.00 (± 0.26) 72.85 (± 0.18) 73.20 (± 0.16) 60.00 (± 0.72)
> 1 day

0.16” 1.42” 9.86” 9.46” 0.48”

RW 81.11 (± 1.23) 19.33 (± 0.62)
> 1 day > 1 day 57.06 (± 0.86)

> 1 day
3’ 51” 12’ 58” 1h 33’ 32”

GR 71.67 (± 0.81) 32.00 (± 0.46) 65.52 (± 0.35) 66.70 (± 0.15) 59.41 (± 0.94) 79.40 (± 0.39)
0.79” 17.77” 40.03” 41.36” 2.21” 15’ 13”

OA 82.22 (± 0.68) 43.16 (± 0.56) 69.53 (± 0.20) 68.76 (± 0.15) 58.23 (± 0.82) 77.52 (± 0.43)
6.03” 1’ 57” 1h 33’ 35” 1h 32’ 51” 28.28” 7h 45’ 5”

WL ST 83.33 (± 0.86) 52.16 (± 0.61) 84.72 (± 0.16) 84.26 (± 0.22) 57.64 (± 0.66) 76.83 (± 0.49)
2.91” 17.12” 1’ 57” 2’ 00” 7.35” 5’ 06”

WL SP 84.55 (± 1.08) 61.00 (± 0.69) 84.64 (± 0.21) 84.29 (± 0.17) 56.76 (± 0.74)
> 1 day

1.27” 12.23” 1’ 15” 1’ 13” 2.81”

WL OA 85.55 (± 1.02) 53.66 (± 0.72) 85.35 (± 0.18) 84.51 (± 0.14) 59.70 (± 1.01)
> 1 day

27.46” 7’ 2” 5h 7’ 57” 5h 4’ 5” 2’ 3”

EMD 89.44 (± 0.76) 43.17 (± 0.48) 76.76 (± 0.17) 73.88 (± 0.18) 58.82 (± 0.83)
> 1 day

5.61” 1’ 53” 1h 15’ 44” 1h 16’ 10” 25.79”

PM 86.67 (± 0.60) 40.33 (± 0.34) 72.91 (± 0.53) 71.97 (± 0.15) 60.22 (± 0.86) 77.78 (± 0.48)
3.52” 21.50” 5’ 48” 5’ 50” 9.58” 4’ 30”

WL PM 87.77 (± 0.81) 55.55 (± 0.56) 86.40 (± 0.20) 85.34 (± 0.23) 61.41 (± 0.81) 78.63 (± 0.26)
9.20” 1’ 25” 50’ 35” 50’ 42” 29.33” 16’ 15”

Table 2: Classification accuracy (± standard deviation) and CPU runtime for kernel/similarity matrix computation of the random
walk kernel (RW), shortest path kernel (SP), graphlets of size 3 kernel (GR), Lovász ϑ kernel (Lo-ϑ), optimal assignment simi-
larity (OA), Weisfeiler-Lehman subtree kernel (WL ST), Weisfeiler-Lehman shortest path kernel (WL SP), Weisfeiler-Lehman
optimal assignment similarity (WL OA), earth mover’s distance similarity (EMD), pyramid match kernel (PM) and Weisfeiler-
Lehman pyramid match kernel (WL PM) on the 6 graph classification datasets. > 1 day indicates that the computation did not
finish after 1 day.

two methods. When dealing with datasets containing large
graphs such as the D&D dataset, the behaviour of the ap-
proaches completely changes. Specifically, on that dataset,
half of the methods failed to compute the kernel/similarity
matrix within 1 day, while from the remaining methods,
only the PM, WL PM, WL ST and GR kernels managed to
complete their computations within a reasonable time. PM
is the fastest method on D&D for both the labeled and un-
labeled case. Overall, the low computational complexity of
the PM kernel makes it an attractive choice for large-scale
graph classification problems. Furthermore, in contrast to
EMD and OA, PM always yields a positive semidefinite ker-
nel matrix, and enjoys the theoretical guarantees associated
with kernel methods.

6 Conclusion
In this paper, we presented two algorithms for comparing la-
beled and unlabeled graphs. These algorithms represent each

graph as a set of vectors. The vectors correspond to embed-
dings of the graph’s vertices generated by eigenvalue decom-
position of the adjacency matrix. The similarity between two
graphs is then determined using the Earth Mover’s Distance
metric. These similarities do not yield a positive semidefi-
nite matrix. We also present the Pyramid Match graph ker-
nel that finds an approximate correspondence between the
sets of vectors of the two graphs. We evaluated the two ap-
proaches on six datasets and compared them with several
graph kernels. The algorithms showed good performance,
while remaining competitive in terms of running time.
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